
Ugly Ducklings:
Resurrecting unmaintained code.

Dave Jones
davej@codemonkey.org.uk

Abstract

Throughout the development of the 2.5 kernel,
a number of drivers and pieces of infrastruc-
ture that had been left to stagnate finally got
a long overdue cleanup. In some cases, code
that hadn’t been touched for several years got
overhauled. Each time another area got the
cleanup treatment, patterns started to emerge.
This paper attempts to document some of these
patterns so that hopefully by keeping them in
mind, future driver authors don’t fall into the
pitfalls that some of these have fixed up such as
over-abstracting, and massive duplication. By
way of examples, it covers several areas that
got cleaned up in the 2.5 series, but focuses on
the bulk of the work the paper author did on the
agpgart driver.

1 Introduction

It has been a long-standing philosophy that
bending an existing driver to work on a new
piece of hardware is much favoured over a new
implementation which ends up with 99% the
same code as the old. The typical life-cycle of
a driver is as follows.

• Driver is written for hardware vendors A’s
new widget

• Vendor B makes a compatible widget.

• Id’s for Vendor B’s product get added to
the driver

• (Repeat for several other vendors/other
register compatible widgets)

• Slightly different widgets start appearing,
which are still mostly compatible. Driver
starts to take on new form where it needs
to special case certain widgets in different
code paths.

• Repeat for several more new widgets.

• Driver is now 100K+ of spaghetti.

• Original driver maintainer moves on to
new project, leaving driver in current
state.

• New widget Id’s get added.

• Most people too scared to change too
much of the code in fear of subtly break-
ing support for other widgets.

2 Cleanups overview.

Throughout the development of the 2.5 kernel,
a number of drivers and pieces of infrastruc-
ture that had been left to stagnate finally got a



long overdue cleanup. Each time another area
got the cleanup treatment, patterns started to
emerge.

2.1 The splitting up of multiple instances.

The ’support all hardware all in the same driver
.c file’ approach is flawed. If you want to
change how vendor B’s products work, you
shouldn’t be touching any code for other ven-
dors devices. With hundreds or thousands of
lines of irrelevant code, it’s also a pain to nav-
igate your way around the source. By split-
ting the driver into multiple vendor .c files, you
also start to notice patterns such as "this func-
tion is duplicated in all vendor files, so be-
longs in a generic .c file". Sometimes however,
things go the other way. In 2.4, we have sev-
eral separate RNG (Random Number Genera-
tor) drivers. Jeff Garzik found that by merging
all of these to the same file, lots of code dupli-
cation got removed. Whilst this may work out
for the moment (Whilst the number of RNG
drivers is quite low, if there comes a day when
the driver supports many more, it may make
sense to abstract them back out into separate
files again.

2.2 Reorganising directory structures.

The whole idea of directories is to keep sim-
ilar things together. One simple cleanup that
happened in 2.5 was the introduction of the
drivers/char/watchdog directory. Previously,
drivers/char contained over 200 .c and .h files.
By introducing the watchdog subdirectory, you
can instantly find all relevant drivers. Useful
when you have to make changes that affect
all watchdog drivers (as was the case in 2.4
when a security bug had been copied through
all drivers).

2.3 Simplification of abstraction layers.

Sometimes, after introducing support for mul-
tiple widgets to a driver, people over-abstract.
A prime example of this was the agpgart cache
flush routine, which ended up calling through
4-5 function pointers before it actually got to
do anything useful.

2.4 Moving to new APIs to decrease LOC.

With code lying dormant and unmaintained for
several years, it tends to miss the opportunity to
take advantage of easier or faster ways of call-
ing kernel-supplied functionality. As helper
functions get continually added, the number of
lines of code needed to be duplicated in drivers
goes down.

3 Case study #1 - IA32 CPU setup
routines.

This started out life as
arch/i386/kernel/setup.c, and in 2.4, cur-
rently stands at 84KB of code which handles
setting up of the CPU in terms of working
around errata, enabling CPU specific features,
and doing some detective work such as finding
out the cache sizes. Initially supporting Intel
CPUs, the clones started to follow. Today
it supports dozens of different types of x86
CPU, from 10 different vendors. In 2.5,
Patrick Mochel split this file up into per-
vendor support files, and a few generic files.
arch/i386/kernel/cpu/ is a much simpler place
to navigate, and is a lot nicer to hack on than
its predecessor as a result.



4 Case study #2 - IA32 MTRR
driver.

This monster has been around a few years,
and it shows. 71KB of monolithic code, with
multiple implementations built on top of each
other. Each time, with the abstraction layer
bent and twisted into something new. Ini-
tially supporting generic Intel MTRRs, it was
bent into shape to deal with AMD K6’s vari-
ants. Then Cyrix’s ARR’s. Then a myriad
of other clones which did things slightly dif-
ferent. Again, chopping this into per-vendor
pieces makes things a lot simpler, and reduces
the chance of breaking one vendor when fixing
something for another (which has been the case
in the past on more than one occasion).

5 Case study #4 - Bluesmoke.

Bluesmoke is the IA32 machine check excep-
tion handling support. As usual, it first only
supported Intel P5 & P6 CPUs. Over time
things were changed to support AMD proces-
sors, Intel Pentium 4, IDT Winchips, and some
additional features such as background check-
ing. This all started to blow up the file size, and
it became a pain to find your way around a file
with a half dozen similarly named functions.
Time for the split-up treatment. 2.5 now has 7
separate C files for the implementations, with
a central ’generic’ file which calls the specific
per-vendor/model implementations.

Whilst it’s theoretically possible that you could
hack the Makefiles now to only build in for
example, the Intel code if you don’t own any
non-Intel parts, the added complexity, and re-
duction in functionality for the net-gain of just
a few KB of object wasn’t deemed worth it. A
bigger challenge which would benefit from this

change came in the form of the final case study.

6 Case study #4 - AGPGART

6.1 History of AGPGART

AGP support got added to Linux back in
1999. Subsequent updates were somewhat in-
frequent. The bulk of the code never really
changed much. Each update just added PCI
ID’s of new devices, or occasionally a new agp-
gart implementation when things were just too
different to the existing agpgarts.

6.2 How I got involved

During 2002, I was asked by SuSE to im-
plement AGP support for the AMD x86-64.
Thinking this would be easy basing assump-
tions on what I’d previously seen happen to
agpgart (thinking it would be just adding some
new PCI idents or the likes), I (foolishly?)
agreed to do it. Shortly afterwards, I dis-
covered the GART I was writing support for
was unlike anything Linux currently supported.
Firstly, the north-bridge was on-CPU, which
meant on an SMP box, there would be more
than one of them, and they would have to be
kept coherent with each other. Secondly, it was
the first GART to support version 3.0 of the
AGP standard. Whilst this is backwards com-
patible for the most part, there are some ad-
ditional features that need to be taken care of
(such as the transfer speed selector working in
completely different ways to how it did in pre-
vious versions of the standard). This was quite
a lot to take on board, so I started staring at the
134KB of agpgart back-end code (there’s also
25KB of front-end code).



6.3 More problems..

Getting up to speed on a driver of this size,
which supports over 50 different AGP chipsets
is not a task that happens overnight. Lots of
those implementations are either the same, or
very similar, but it still leaves around a dozen
or so separate code paths. Now to find out
which one is most similar to the GART I’m
writing for. I eventually gave up trying to
find one similar enough, and just started from
scratch. My mails for "help" to the original
maintainer of agpgart went to /dev/null, which
meant I had to figure out how a lot of it worked
the hard way. After finally getting things work-
ing I had decided that enough was enough, and
for 2.5, I was going to give this code a major
overhaul.

6.4 How things were cleaned up

• As usual, first things first, split
drivers/char/agp/agpgart_be.c (134KB)
into lots of smaller source files. 1 per
chipset vendor. This was an instant
cleanup, which had no problems being
merged. Shortly afterwards Greg Kroah-
Hartmann converted the chipset probing
routines over partially to some of the
’new’ PCI API, killing off a bunch more
useless ugly code.

• With everything in per-vendor files now,
things were a lot cleaner, but there was
still some real bad mess that needed clean-
ing. The agpgart_be.c file still existed,
which acted as a generic part which had
all the bits to call the routines in the per-
vendor files. One particular ugly that
stuck out was the 350 line struct that
matched known PCI IDs to init routines.
The redundancy in this struct was really
bad.

static struct {
unsigned short device_id;
unsigned short vendor_id;
enum chipset_type chipset;
const char *vendor_name;
const char *chipset_name;
int (*chipset_setup) (struct pci_dev *pdev);

} agp_bridge_info[] __initdata = {
\#ifdef CONFIG_AGP_ALI

{ PCI_DEVICE_ID_AL_M1541_0,
PCI_VENDOR_ID_AL,
ALI_M1541,
"ALi",
"M1541",
ali_generic_setup },

... (Continue for dozens more entries).

With this wasteful struct, if 20 out of those
50 entries are for Intel GARTs, we dupli-
cate the vendor ID, vendor name string,
and in a lot of cases, the setup routine too.
This was cleaned up in several steps.

– Split the structs out from agp-
gart_be.c to $vendor.h (Ie, move all
the ALi entries to ali.h, AMD entries
to amd.h etc..)

– Remove all duplication from each of
these structs.

– Replace the duplication with a
’header struct’ containing the vendor
ID, vendor name string, and a ptr to
the remaining data.

– Replace the struct in agpgart_be.c
with a struct that points to the vari-
ous split out structures in the $ven-
dor.h files.

6.5 The ’new’ PCI API

Somewhat pleased with myself, I mailed off
the changes to Linus, who told me to start



again, this time using the pci_driver function-
ality. As GregKH had done part of the work
here already, it wasn’t actually that much work
to bend what I had already into shape. This
did however bring about a big change over
2.4’s agpgart. With each of the per-chipset
drivers now containing a pci_driver struct, they
worked independently of the agpgart core as
stand-alone modules. I wasn’t initially happy
with this, but Linus liked it, so it stayed that
way, it did however mean a rewrite in module
locking was needed, which nicely coincided
with Rusty Russell rewriting how module lock-
ing worked.

6.6 Maintainership

By this point, I had completely gutted the way
the agpgart backends worked. I felt I had made
significant enough change to adopt the code,
and make an entry for myself in the MAIN-
TAINERS file. Which was probably my sec-
ond biggest mistake so far. Within just a few
days of doing so, my mailbox was flooded
with bug reports, stagnant patches, thank-you’s
and insults. One thing that I hadn’t antici-
pated was just how far-reaching this code was.
Not only did I now have to follow and under-
stand what was going on in the agpgart code,
but also found myself digging further into DRI
to follow its interaction with AGPGART. Sub-
sequently, even parts of XFree86 came under
scrutiny, and even FreeBSD (which interest-
ingly did the ’separate-file-per-vendor’ thing
from day 1) to see just how much I could or
couldn’t change without breaking things too
much from a userspace point of view.

6.7 Taking AGPGART forward - AGP 3.0 sup-
port.

After getting on top of the various patches,
and fixing the various problems the new code
brought about, AGPGART had been dragged
kicking and screaming into something that re-
sembled a modern driver. Well, almost. I then
moved on to start tackling the next big thing for
agpgart. Generic AGP 3.0 support. Matthew
Tolentino from Intel had come up with a patch
for Intel’s AGP3.0 chipset (the I7505), and had
re-implemented a bunch of code that I had writ-
ten for the x86-64. After factoring out the
common parts, this got to a state where things
looked just fine.

6.8 Return of the previous maintainer

Just when things were beginning to go quiet
(Apart from additional AGP3 GARTs turning
up needing implementing), Jeff Hartmann, the
original maintainer of the 2.4 AGPGART reap-
peared with a 130KB patch against the original
2.4 code. It offered various functionality, sup-
porting AGP3, and cleaning up a lot of code
in the process. In a lot of other ways however,
it was a huge step backwards. Splitting Jeff’s
huge patch into smaller pieces was a massive
job. Bits of it went in, and Linus rejected a
bunch of them, but there was worse to come
(more diffs). At the time of writing, Jeff’s out-
standing diffs vs 2.5.59 is around 380KB. A lot
of this is unlikely to be merged before 2.6 with-
out considerable rewriting.

6.9 Useless abstractions

Furthering the cleanup mantra, agpgart code
has been described in many ways by many peo-
ple (including _shit_ by Linus himself). Pre-



cleanup however, my pet-name for this mon-
ster was ’abstraction hell’. As an excellent
HOWNOTTO in abstraction, here’s how agp-
gart used to flush the cache.

• At strategic parts of the code there are
CACHE_FLUSH(); calls.

• CACHE_FLUSH turns out to be a macro
which expands to agp_bridge.cache_flush

• agp_bridge.cache_flush in 99% of cases,
points to global_cache_flush. The re-
maining case could have been special
cased in global_cache_flush.

• On SMP, global_cache_flush is a define
for smp_flush_cache On UP, it’s a define
for flush_cache

• smp_flush_cache just does an
smp_call_function on flush_cache

• Finally, flush_cache does a "wbinvd" on
IA32/X86_64, "mb" on IA64 or #errors
on anything else.

7 Future directions

7.1 AGPGART

There is still a lot of work to be done on AGP-
GART. All the work so far concentrated on the
back end (which is where all the chipset magic
happens).

• The front-end of the driver (ioctl inter-
face etc) is almost as crufty, and needs
a lot of work to rid it of silly things like
open coded list handling routines instead
of using the generic list.h routines. (Yet
more proof that duplicating functionality

is a bad thing, it gets its double linked list
implementation horribly wrong).

• More work on making the AGP3.0 sup-
port transparent

• Inevitably more support for additional
chipsets

• Multiple AGP bridge support.

• sysfs migration to get away from the hor-
rible ioctl interface. This will unfortu-
nately make the Linux AGPGART com-
pletely incompatible with the FreeBSD
implementation. The only people this
causes concern for are XFree86 develop-
ers, who have to support an additional in-
terface.

7.2 Other kernel work

• APIC drivers The IA32 APIC code is
quite horrible, and quite fragile. It sup-
ports a lot of different types of setup,
from lots of different generic PCs, to the
weird and wonderful bigger machines like
NUMA-Q, Summit and more. The x86
sub-architecture support cleaned up some
of this, by introducing the possibility for
each sub-arch to implement their own
APIC code, but it hasn’t really improved
readability or maintainability of the APIC
code to any great length.

• Watchdogs Small scale cleanup occurred
already in 2.5, which was to just group
all the watchdog drivers from drivers/char
into a new subdirectory called imagina-
tively ’watchdog/’. A lot of these drivers
are duplicating lots of code, sometimes
subtly differently, when they should be us-
ing the same code. For 2.7 a nice cleanup
would be to abstract out the generic parts
of this to a layer above the watchdog
drivers in a similar way to what happened



with AGPGART. In 2.4 there was a secu-
rity hole which meant every single watch-
dog driver needed to be audited and fixed.
By moving all this functionality out of the
drivers, this could have been fixed in a sin-
gle place.

8 Summary

• Split out multiple implementations to
their own files unless they are small and/or
similar enough to the existing implemen-
tation.

• Don’t re-implement code unnecessarily,
even if you think you may need some-
thing extra that the generic code doesn’t
give you. Build on top of the generic code
rather than re-implementing.

• Use modern interfaces where possible.
This isn’t always easy if you want your
driver to compile on earlier kernel ver-
sions as well (Especially true for out-of-
tree drivers).

• Before abstracting something out, think
about why you actually need it abstracted.
What will the callers of the abstraction do
in the common case?

• Directories are there to keep similar things
together. Use them. (Obviously, only
when they make sense, a directory for 2-3
drivers is perhaps going too far).

• Don’t disappear for four years and reap-
pear with a 380KB patch against the last
code you maintained. You may find that
a lot has changed whilst you were gone,
and merging will be a *nightmare*. (Es-
pecially if you didn’t keep individual per-
change changesets).


