
Automated Website Synthesis

Siu-wai Leung and Dave Robertson

Centre for Intelligent Systems and their Applications

School of Informatics, University of Edinburgh

Abstract

Automated website synthesis is more straightforward than auto-
mated program synthesis in artificial intelligence research but can yield
clear benefits for large groups of people. We briefly describe our cur-
rent work and approach to building websites for academic research and
aviation accident reporting. Automated website synthesis is applica-
ble to many situations which require efficiency in creating websites for
emergency or experimenting website design ideas.

1 Introduction

Automated website synthesis facilitates the construction and maintenance of
websites and their components by using knowledge engineering technologies.
It will help web developers and customers cope with technical problems such
as:

• Short life cycles from continual re-design

• Diversified customer preferences

• Frequent content updates

• Reliability assurance

This article will describe the basic ideas and our approach to automated
website synthesis.

2 Generating Programs If Possible

There has been theoretical and applied research in software engineering for
generating customised and optimised intermediates or end-products of the
software components on demand by using automated program synthesis
[Lowry and Duran, 1989, Czarnecki and Eisenecker, 2000]. Its basic idea is
to incrementally refine a high-level specification until an implementation is

1



derived. If automated generation could be done, its advantages are numer-
ous and so obvious, such as the increase of productivity, cost reduction,
guaranteed consistency and compilance of standards. We do not need to
elaborate them in this article. We know that partial automation is achiev-
able by using automated program synthesis and generative programming,
while high degree of automation was only successful in narrow domains of
applications. Successful applications of program synthesis in specific do-
mains are such as ecological model synthesis and astrophysics model syn-
thesis [Robertson et al., 1991, Lowry and Van Baalen, 1997]. The limita-
tions of program synthesis for general use are mainly due to the fact that
the existing technologies are insufficient and/or the acquired domain knowl-
edge is inadequate. To gain an improvement, we still need to develop better
techniques and acquire useful domain/task-specific knowledge.

3 Generating Websites If Possible

The websites which do not need much custom programming provide perhaps
a chance for automated domain/task-specific synthesis to give benefit to
sizeable user communities. Two key features of such websites make this
possible: they often are constructed in a standard way for a given user
community; and (if they do not contain complex interactive features) they
are comparatively simple formal structures. We ignore the websites which
require custom programming because they do not usually follow any patterns
and they can be as complicated as the most sophisticated programs.

Standardisation in website design at the level of presentation is already
exploited by content management systems, making intensive use of tem-
plates and stylesheets [Scharl, 2000]. There is, however, deeper standard-
isation between the way one models the part of an organisation relevant
to a website and the information content assembled to construct that site.
For example, there are thousands of websites describing academic research
groups. Most of these have similar content structures, based on similar
conceptual models of the organisation of these research groups. The con-
tent and websites can be formally specified and automatically synthesised
[Robertson and Agusti, 1999]. These website synthesis techniques based on
a computational logic approach have been used by us since 1996.

4 A Computational Logic Approach

We use transformational techniques of program synthesis, particularly struc-
tural synthesis in which reusable design components are parameterised, con-
figured and refined to bridge the gap between problem description and final
specification [Robertson and Agusti, 1999]. Such techniques provide a for-
mal knowledge-based approach [Cavalcanti and Robertson, 2000]. The re-

2



finement steps of the reusable design components are declaratively specified
by rewrite rules (similar to grammar rules in languauge processing). The
declarative rewrite rules are usually more precise and concise than ordinary
program codes. To interpret the simple syntax of rewrite rules, the web-
site synthesiser can be very compact. By using computational logics, the
properties of the websites can be systematically verified for higher reliability
[Cavalcanti and Robertson, 2002].

We have applied this technique to synthesise websites for University in-
stitutes [Robertson and Agusti, 1999], aviation accident reporting, its causal
perception experiments [Leung et al., 2002], and web-based customer rela-
tionship management (CRM) [Leung et al., 2003]. Website synthesis begins
with an ontology (meta-description based on a Semantic Web) of a problem
domain and applicable transformations which relate elements of the ontology
to elements of the website content description. We therefore have a search
space of rewrites from an initial domain-specific ontology leading to a de-
tailed website content description. In simple cases, where there is exactly
one route through this space, we have a fully automatic synthesis procedure.
If there are multiple routes leading to different results, interactions with hu-
man or automated reasoners at choice points or additional problem-specific
constraints are necessary. The final step transforms the final web content
description into a website. As such, the websites can be synthesised with
great ease and high reliability.

5 Piloting Website Synthesis

Our first use of this technique was to generate and maintain our research
group website (http://www.dai.ed.ac.uk/groups/ssp) in 1996. We de-
vised a simple (less than 20 terms) ontology describing the structure of the
group; built, using this ontology, a knowledge base describing the content
of the group; then wrote a set of transformations which convert any knowl-
edge base written using this ontology into the web content to be presented to
the website. Finally, using PiLLoW [Cabeza et al., 1996], the web content is
converted into web pages. This was an initial investment of 5 person-days of
efforts – about 2 person-days longer than it would have taken to author the
HTML web pages directly in a structure-based editor. Having made this ef-
fort, however, we can (re-)generate the entire site within a few seconds at any
time to reflect the changes in the knowledge base. This has meant that for
the past years the maintenance cost of our site to researchers has been close
to zero. Furthermore, the transformations used to connect knowledge base to
web content are sufficiently general that they have been applied, with slight
modifications, to a larger institutes (e.g., the Centre for Intelligent Systems
and their Applications, http://www.cisa.informatics.ed.ac.uk). This
sort stability and broad applicability is possible because academic research

3



institutions often share similar organisation structure and similar ways of
presenting that structure on the web. We take advantage of this to cut re-
current maintenance costs radically by intensive use of automated synthesis.
In a sense, such websites possesses basic content management facilities.

6 Managing Changes and Variety

As seen in our cases, website synthesis serves web content management well.
As long as the domain ontology (information architecture) remains the same,
changes of information content would not destroy the structural integrity of
a website. Even if the domain ontology is changed, the website can be rebuilt
using applicable web components with little effort.

Website synthesis may also generate multiple website structures with a
prescribed content either to tailor services for customers or to test perceptual
hypotheses. We proposed a use of website synthesis in facilitating the inter-
actions of web-based customer relationship (CRM) systems with customers
[Leung et al., 2003]. In one experiment for causal perception of aviation ac-
cidents, we synthesised two hundred websites with different arrangements
of presenting aviation accident information [Leung et al., 2002] and corrob-
orated a recent theory of causal perception [Lien and Cheng, 2000]. It is
promising that software agents are useful to further automate the manage-
ment of synthesised websites [Cavalcanti and Vasconcelos, 2002].

7 Experimenting with Web Rhetorics

Same content of information may have different rhetorics in arranging the
navigation and presentation patterns. The web designers/architects and
target audience have their own preference but it is just too difficult (expen-
sive in time and cost) to experiment with the possible designs. As website
synthesis can produce multiple website prototypes efficiently, the same web
content can be easily expressed in different web rhetorics. This would help
the website developers visualise their preferred web rhetorics and communi-
cate with their clients by using the synthesised website prototypes. We hope
that the study of web rhetorics can be also facilitated. A long term goal is to
have practical software tools to assist the website developers in visualising
reliable (even if not really creative) possibilities of web design. This idea has
been exploited in our experiment of causal perception/judgement of avia-
tion accidents [Leung et al., 2002], we generated 200 websites with slightly
different arrangements (rhetorics) to study the reactions of their users. We
would not be able to create so many websites without using website syn-
thesis. We are also conducting a sophisticated experiment on visualising
causality. The participants use a simple drag-and-drop interface to design
and preview their websites synthesised on-the-fly so that they can easily ex-

4



plore/evaluate different possible designs in displaying causality information
of aviation accident events.

8 Integrating with Semantic Web Technologies

As an alternative to the direct synthesis of web pages in HTML (Hyper-
text Markup Language) from computational logic specifications, we can set
the synthesiser to output XML (eXtensible Markup Language) and XSLT
(eXtensible Stylesheet Language Transformation) documents in compliance
with the W3C standards for Semantic Web and Web Services. By using
XSLT, XML documents can be transformed into HTML or other multimedia
XML documents, such as SVG (Scalable Vector Graphics), for further ren-
dering at client (browser) or server side. Such XML-based transformations,
although more verbose in syntax, are straightforward in translation from
our rewrite rule syntax. As many content management systems (CMS) can
accept XML syntax, the synthesiser may generate the website specifications
in XML-based (or whatever) for integration with the content management
systems, instead of direct generation of final web pages.

9 Formulating Generic Website Models

Almost all established content management systems have their own web-
site models or frameworks, such as Zope CMS Framework, Midgard Frame-
work, Cocoon XSP, etc. Such models and frameworks enable web devel-
opers to select and/or build components. However, even if XML is being
used, their site specifications/configurations in XML cannot be exchanged
or easily translated. This is because different website frameworks have their
own ontologies and models. To suit different preferences or requirements of
technologies, it would be desirable to have a generic website model that is
relatively language independent. We do not need to restrict the develop-
ers to use a specific programming languages, such as Python, Perl, PHP,
or Java, and adapt to different cultures. The generic website model should
be easily transformed into any established website development frameworks.
To develop such a generic website model, we are studying the existing web-
site frameworks, expressing their ontologies and models in Semantic Web
languages, and finding a way to bridge their gaps. This study is also in
line with website synthesis, which may transform web content information
into website specifications for use with any established content management
systems. It is also expected that generic website models and website synthe-
sis may help generate the website components in different ways which are
compatible with multiple content management systems.

5



10 Automating Rational Web Design

Our intention is not to synthesise websites according to all web design the-
ories, but to focus on those websites in which design decisions are consis-
tently justifiable by explicit knowledge i.e. rational web design. When there
are conceptual gaps between information content and available web design
components, we need axioms or rewrite rules to bridge those gaps before
performing website synthesis. Such rules represent web design decisions or
principles. We are looking into a minimal analogy approach and preference
reasoning to automate web design decisions in bridging such conceptual
gaps. Hopefully, such gaps will need shorter arbitrary bridges by creat-
ing/formulating better knowledge and making useful knowledge available to
the website synthesis.

Acknowledgement

This work has been supported by EPSRC grant GR/M98302 for research
on communicating knowledge about accidents from synthesised websites.

References

[Brinck et al., 2002] Brinck, T., Gergle, D., and Wood, S.D. (2002) Usabil-
ity for the Web: Designing Web Sites that Work. Morgan Kaufmann
Publishers.

[Cabeza et al., 1996] Cabeza, D., Hermenegildo, M, and Verma, S. (1996)
The PiLLoW/CIAO library for Internet/WWW programming using com-
putational logic systems. Proceedings of the 1st Workshop on Logic Pro-
gramming Tools for Internet Applications (JICSLP’96), Bonn, Germany,
September 1996.

[Cavalcanti and Robertson, 2000] Cavalcanti, J. and Robertson, D. (2000)
Synthesis of web sites from high level descriptions, The 3rd Workshop on
Web Engineering, Amsterdam, The Netherlands, May 2000.

[Cavalcanti and Robertson, 2002] Cavalcanti, J. and Robertson, D. (2002)
Verifying web site properties using computational logic. In Van Bommel,
P. (ed.) Information Modeling for Internet Applications, Idea Group Pub-
lishing.

[Cavalcanti and Vasconcelos, 2002] Cavalcanti, J. and Vasconcelos, W.
(2002) A logic-based approach for automatic synthesis and maintenance
of web sites, Conference of Software Engineering and Knowledge Engi-
neering (SEKE-2002), Ischia, Italy, July, 2002.

6



[Czarnecki and Eisenecker, 2000] Czarnecki, K. and Eisenecker, U. (2000)
Generative Programming: Methods, Tools, and Applications. Addison-
Wesley.

[Leung et al., 2002] Leung, S.W., Robertson, D., Lee, J., and Johnson, C.
(2002) Using website synthesis in an experiment on the causal perception
of aviation accidents. Workshop on the Investigation and Reporting of
Incidents and Accidents (IRIA 2002), 17-20 July, Glasgow, U.K.

[Leung et al., 2003] Leung, S.W., Leung, S.K., Kung, A., Tang, T., Wong,
K.F., and Li, T. (2003) Using automated web synthesis and semantic
web technologies for customer preference management in web-based CRM
systems. Technovate 2003 Conference on CRM, Internet Research and
New Media, Cannes, France, January 2003.

[Lien and Cheng, 2000] Distinguishing genuine from spurious causes: a co-
herence hypothesis. Cognitive Psychology, 40:87-137.

[Lowry and Van Baalen, 1997] Lowry, M. and Van Baalen (1997) Meta-
amphion: Synthesis of efficient domain-specific program synthesis sys-
tems. Automated Software Engineering, 4:199-241.

[Lowry and Duran, 1989] Lowry, M. and Duran, R. (1989) Knowledge-
based software engineering. In Barr, A., Cohen, P. and Feigenbaum, E.
(ed.) The Handbook of Artificial Intelligence, Volume IV, pp 241-322.

[Robertson et al., 1991] Robertson, D., Bundy, A., Muetzelfeldt, R., Hag-
gith, M., and Uschold, M. (1991) Eco-Logic: Logic-Based Approaches to
Ecological Modelling. MIT Press.

[Robertson and Agusti, 1999] Software Blueprints: Lightweight Uses of
Logic in Conceptual Modelling. ACM Press and Addison-Wesley.

[Scharl, 2000] Scharl, A. (2000) Evolutionary Web Development. Springer-
Verlag.

7


