Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK

Dstat: plugin-based real-time monitoring

Table of Contents

LI a1 Lo I8 T TSP TSP PP PP UPPRP 2
P oz LT (o g D - PP 2
R D] = [l o] g F= T = Lo (=TT o TP UT PP PPPPPR 2
3.1 HISTOIY Of COUNTEIS. ...ttt s bt e bt eeabre e s £eeeesaaaannnnrrneeeeeas 3
V20 Yo (o 1 o I8 011 T ge Tor=1 1T] o A TP TRRRR 3
R @701 (o101l a1To] al1Te] g1 il gl JUTa11 TSP 3
3.4.INtErMEAIAE UPAALES. ...coutiie ittt e bbb et e e s 3
3.5.AAING CUSTOM COUNTEIS. .. .eeiiiiiiiiiiii ettt ettt e et e e e e st e e e s e bt e e e e e nnbe e e e e e annbeeaeeanns oeeeeeeens 3
3.6.Selecting PluGINS aNd COUNTEIS. ... ittt ettt et e st e e st e e e sbe e e s be e e snee s sbeeeeanneaans 4
A = oo T4 1] a o IR (o G2 1 PSP PPPUP PP 4
3.8.TIME-PIUGIN INCIUAEA. ... et e et e e e s et e e e s e aabe e e e e eeeaeaeas 4
3.9.Terminal CaP@DIlILIES.eeeieiieiei et e e e e e e e e e e b b e e e e e e nnr e e e e e anne oas 4
L 0 To [E- = Ta o oo T) =] & TSP P PP PP PUPPPTPN 5
L3 I [1 (=1 P= U o 18T |1 T USSR 5
4.2 EXIEINAL PIUGINS. ..ceee ettt et e e e e bt e e e e e b e et e e e e n e e e e e e aabee e e e e aanbe e e e e e anrne teeeeas 6
4. 3. MOSE-WANTEA PIUGINS. ..ttt ettt e e s e e e sbe e e s b e e e £eeeeeaaaannnnrrnneeeeas 7
LI L] To T I 1= - PP 7
L I == o] [T o o] 0T 11 I S ST PP PPPPPPPP 7
5.2.Total Or iINAIVIAUAI COUNTETS. ...ttt st e e sbe £eeeeesesaaaannnnrrneeeeeas 7
RS N {1 T=T o Vo] To I 01U 1 o | P TRTR 8
5.4.PIUGiN SEAICH PAtN....coi i e e s 8
S LT o= YT P PSSP PP PUPPPPPPRRN 8
L IS 00T o] (IR TZ] (= o] =Y o 8
6.2.What is this SyStem dOING NOW 7.ttt ettt e e ae e e e raee e s saaannnssreeeeeeas 9
6.3.What process is using all my CPU or memory at 4:20 AM ..o e 9
6.4.What device is SIOWING dOWN MY SYSEM 2. .eiiiiiiie e e e e e seee e eeeeeeesaaannnnnneeneeeees 9
6.5.How does my WIFI signal evolve when | move my laptop or AP through the house ?............ccccuuuinnee. 10
6.6.1s my SWRAID performing @s it ClaiMS 2.......ooo it e 10
7. Writing YOUr OWN DSTat PIUGIN. ...t et e e e e e s st e e s s nen e e e e sanane aaeees 10
7.1.Introducing the hello WOrd PIUGIN.ueiii e 2eeeeeeaeeeas 11
7.2.ParSING COUNTEIS.utiiiittie ittt ettt a et e eab et e e sttt e e b e e e et e e e e se e e e beeesanbe feneeeeeeesessssaannnnn 11
J4%C T oY o113 T I 1TSS 12
7.4.Piping 10 @n @PPlCALION.eiiiiiiie et aaaa e e e e e e aaaaaaaaas 12
BLKNOWI ISSUEBS. ...ttt ettt ettt e et e ettt e o b e e e ek et e e b et e e aab e e e be e e e eabeeeanbe e e feeeeaeeeeseaaaaans 12
ST @0 0[] (=] [0177=] = 12
R D L] v= o 1= Ta (o] 1 T (o= TP 13
8.2.1.PIUGIN PEITOIMMANCE. ...ttt e s b e e s e e s abbbrreereeeaaeens 13
8.2.2.DebUGQING DSTAL.....c eieeiee it e e e e e e s naeee s 183
8.2.3.Writing Dstat and PIUGINS iN C....oouuiiiiiii ettt e e e s be e es breeeeaaaaaaaeaas 14
S I o V1 aTo o B O PRSPPI PPPPPPPPRN 14
S UL (0= [=1Y7=1 (] o] 0 =T o SRR 14
L0 I T PP OUUP N 15
Dagit Linux Solutions, Dag Wieers Page 1 of 15

Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK
1. Introduction

Many tools exist to monitor hardware resources and software behaviour, but few tools exist that
allow you to easily monitor any conceivable counter.

Dstat was designed with the idea that it should be simple to plug in a piece of code that extracts one
or more counters, and make it visible in a way that visually pleases the eye and helps you extract
information in real-time.

By being able to select those counters that you want (and likely those counters that matter to you in
the job you're doing) you make it easier to correlate raw numbers and see a pattern that may
otherwise not be visible.

2. A case for Dstat

A few years ago | was involved in a project that was testing a storage cluster with a SAN back-end
using GPFS and Samba for a broadcasting company. The performance tests that were scheduled
together with the customer took a few weeks to measure the different behaviour under different
stresses.

During these tests there was a need to see how each of the components behaved and to find
problematic behaviour during testing. Also, because it involved 5 GPFS nodes, we needed to make
sure that the load was spread evenly during the test. If everything went well repeatedly, the results
were validated and the next batch of tests could be prepared and run.

We started off using different tools at first, but the more counters we were trying to capture the
harder it was to post-process the information we had collected. What's more, we often saw only after
performing tests that the data was not representative because the numbers didn't add up.
Sometimes it was caused by the massive setup of clients that were autonomously stressing the
cluster. On other occasions we noticed that the network was the culprit. All in all, we lost time
because we could only validate the results by relating numbers after the tests were completed and
not during the tests.

Complicating the matter was the fact that 5 different nodes were involved and using the normal
command line tools like vmstat, iostat or ifstat (which only showed us a small part of what was
happening) was problematic as each needed a different terminal. Besides, not all information was
interesting.

Eventually Dstat was born, to make a dull task more enjoyable.

After the project was finished | was able to correlate system resources with network throughput,
TCP information, Samba sessions, GPFS throughput, accumulated block device throughput, HBA
throughput, all within a single interval.

3. Dstat characteristics

There are many ideas incorporated into Dstat by design, and this section serves to list all of them.
Not all of them may appeal to the task you are doing, but the combination may make it an appealing
proposition nevertheless.

Dagit Linux Solutions, Dag Wieers Page 2 of 15
Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK

3.1. History of counters

An important characteristic in tools like vmstat, iostat or ifstat is the fact that you can compare
historical collected data with new data. This allows you to have a good feeling of how something is
evolving.

Compatre this to tools like top, htop or nmon, where data is often being refreshed and you loose
historical information.

3.2. Adding unit indication

It was very important that when numbers were compared, they were in the same unit, and not eg. a
different power exponent. The human mind sometimes works in mysterious ways and more so when
working with numbers for hours and hours. Adding the unit is something very convenient and may
reduce the human error factor.

Additionally, indicating the unit also makes sure that the columns have a fixed width. Often when
using vmstat or other tools, the columns tend to shift depending on the width of the counter. This
makes it very inconvenient to find counters in the shifted output.

3.3. Colour highlighting units

After | added colours to help improve indicating unites, | noticed that the colours also helped to show
patterns. This of course is very limited, nevertheless it instantly shows when numbers are flat or
changes are taking place.

IMPORTANT: The colours are arbitrarily chosen. Do not make the mistake to assume that green
means good and red means bad. There is no real meaning to the colour itself, however a change
of colour does mean that a value has gone over some pre-defined limit.

3.4. Intermediate updates

During tests, when you choose to see average values over a given time, it can be useful to see how
the averages evolve. Dstat, by default, displays intermediate updates. This means that if you select
to see 10 second averages, after each second you see the accumulated average over the timespan.
This means that after 4 seconds with intermediate updates, you see an average taken over
the 4 second timeframe.

NOTE: This means that the closer you get to the given timeframe (eg. 10 seconds) the more likely
that it nears its final average over that period.

3.5. Adding custom counters

Dstat was specifically designed to enable anyone to add their own counters in a matter of minutes.
The plugin-based system takes care of displaying, colouring and adding units to the counters. As a
plugin-writer, you only have to focus on extracting the counters from the kernel (procfs or sysfs),
logfiles or daemons.

Dagit Linux Solutions, Dag Wieers Page 3 of 15
Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK

3.6. Selecting plugins and counters

Being able to add custom counters is important, but selecting those counters that you really need is
even more important if you want to correlate counters and see patterns. Less is more.

NOTE: In fact, Dstat currently does not allow you to select just counters, it only allows you to
select plugins. However, since you can modify or fork a plugin, you still have the ability to select
just those counters you prefer.

3.7. Exporting to CSV

Having information on screen is one thing, you most likely need some hard evidence later to make
your case. (Why else do all the work?)

Dstat allows to write out all counters in the greatest detail possible to CSV. By default it also adds
the command-line used for generating the output, as well as a date and time stamp. Since Dstat in
the first place is meant for human-readable real-time statistics, it will by default also display the
counters to screen (unless you /dev/null it).

TIP: Dstat appends to the output file so that you can add tests-results of different tests to a single
file. However, make sure that you tag each test properly (eg. by using distinct filenames for each
different test).

3.8. Time-plugin included

It may seem a small thing, but having exact time (and date) information for your counters allows for
a completely different usage as well. By adding simple date and time information, Dstat can be used
as a background process in a screen to monitor the behaviour of your system during the night.

This proves to be very valuable for example to find offending processes during nightly tasks or to
pinpoint their behaviour to certain events that you cannot monitor during working hours.

It is also important when you have multiple Dstats running (eg. for nodes in a cluster) to correlate
counters between the outputs.

3.9. Terminal capabilities

Dstat also takes into account the width and height of your terminal window and modifies output to fit
into your terminal. This, of course, has no effect on what ends up in the CSV output.

Another (debatable) useful feature is that Dstat will modify the terminal title to indicate on what
system it was run and what options were used. Especially when monitoring nodes in a cluster, this
can be useful, but even in Gnome finding your Dstat window is handy.

WARNING: Some people however are annoyed by the fact that their distribution does not reset
the terminal title and Dstat therefor messes it up. There is no way for Dstat to fix this.

Dagit Linux Solutions, Dag Wieers Page 4 of 15
Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK
4. Plugins and counters

When we talk about plugins, we make a distinction between those plugins that are included within
the Dstat tool itself, and those that ship with it externally. In essence there is no real difference, as
the internal plugins could easily have been created as an external plugin. The basic difference is
that the internal plugins have no dependencies except on procfs.

Having the basic plugins as part of Dstat, makes sure that Dstat can be moved as a self-contained
file to other systems.

4.1. Internal plugins

The plugins that have been selected to be part of the Dstat tool itself, and therefor have no
dependencies other than procfs, are:

* cpu, cpu24: CPU counters

e disk, disk24, disk24o0ld: disk counters
e epoch: seconds since Epoch

e int, int24: interrupts per IRQ

e ipc: IPC counters

* |oad: load counters

* lock: locking counters

°* mem: memory usage

* net: network usage

* page, page24: paging counters
* proc: process counters

* raw: raw socket counters

* swap, swapold: swap usage

e sys: system (kernel) counters

e tcp: TCP socket counters

* time: date and time

e udp: UDP socket counters

* unix: unix socket counters

For backward compatibility with older kernels there is a cascading system that selects the most
appropriate internal plugin for your kernel. (eg. the dst at _di sk plugin falls back to dst at _di sk24
and dst at _di sk24o0l d) At this moment there is no such system for external plugins.

Dagit Linux Solutions, Dag Wieers Page 5 of 15
Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK

4.2. External plugins

This basic functionality is easily extended by writing your own plugins (subclasses of the Dstat class)
which are then inserted at runtime into Dstat. A set of external modules exist for:

e battery: battery usage

e cpufreq: CPU frequency

¢ dbus: DBUS connections

e freespace: free space on filesystems

e gpfsop: GPFS operations counters

e gpfs: GPFS IO counters

e innodb_io: innodb I/O counters

e innodb_keys: innodb key operation counters
* innodb_ops: innodb operations counters

* mysql_io: MySQL I/O counters

* mysql_ops: MySQL operations counters

* nfs3op: NFS3 client operations counters

e nfs3: NFS3 client counters

e nfsd3op: NFS3 server operations counters
¢ nfsd3: NFS3 server counters

e postfix: postfix queue counters

e rpcd: RPC server counters

e rpc: RPC client counters

e sendmail: sendmail queue counters

e thermal: thermal counters

* topbio: most expensive block I/O process
* topcpu: most expensive cpu process

e topio: most expensive I/O process

e topmem: most expensive memory process
e utmp: utmp counters

e vmkhba: VMware kernel HBA counters

e vmkint: VMWare kernel interrupt counters
e vzcpu: OpenVZ CPU counters

e vzubc: OpenVZ user beancounters

e wifi: WIFI quality information

Dagit Linux Solutions, Dag Wieers Page 6 of 15
Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK

4.3. Most-wanted plugins

Hoping someone interested reads this document, | added a few plugins that would be “very nice” to
have but are currently lacking:

¢ glab: needs a VM expert to make sense out of the vast amount of data

e xorg: need information on how to get X resources, would be nice to see evolution of X resources
over time

e samba: lacking information to get counters from Samba without forking smbstatus every second
e snmp: could be useful to relate counters from different systems in a single Dstat

e topx: display the most expensive X application(s)

* systemtap: connecting Dstat to systemtap counters

Creative souls with other ideas are welcome as well !

5. Using Dstat

Central to the Dstat command line interface is the selection of plugins. The selection and order of
options influence the Dstat output directly.

5.1. Enabling plugins

The internal plugins have short and/or long options within Dstat, eg. - ¢ or —epu will enable the cpu
counters.

The external plugins are enable by a single - Moption followed by one or more plugin-names. (This
also works for internal plugins)

The following examples will enable the time, cpu and disk plugins, and are equal.

dstat -tcd

dstat --time --cpu --disk
dstat -Mtinme, cpu, di sk

dstat -Mtinme -Mcpu - M disk

5.2. Total or individual counters

Some of the plugins can show both total values or individual values and therefor have an extra
option to influence this decision.

dstat -d -D sda, sdb
dstat -n -N ethO, ethl
dstat -c -Ctotal,0,1

You can show both the individual values and total values as follows:

[dag@orsea ~]$ dstat -d -D total, hda, hdc
-dsk/total ----dsk/hda----- dsk/ hdc- -
read wit: read wit: read wit
1384k 1502k: 114k 1332k: 81k 359B

0 44Kk 0 44k: 0 0
0 0 : 0 0 : 0 0
Dagit Linux Solutions, Dag Wieers Page 7 of 15

Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK
The special - f or —ul | option allows to select individual counters by default, and can be overruled
by-C,-D,-1,-Nor-S.

5.3. Influencing output

Dstat has a few more options to influence its output. With the —aocol or one can disable colours.
The —hoheader s option disables repeating headers. The —Aoupdat e option disables intermediate
updates. The —eut put option is used for writing out to a CSV file.

5.4. Plugin search path

Dstat looks in the following places for plugins. This allows a user without root privileges to use some
extra plugins.

e ~/dstat/

e /plugins/

e /usr/share/dstat/

e /usr/local/share/dstat/

The option - M | i st shows the available plugins and their location in the order that the plugin
search path is used.

NOTE: Plugins are name dst at _<nane>. py.

6. Use-cases

Below are some use-cases to demonstrate the usage of Dstat.

WARNING: The following examples do not look as nice as they do on screen because this
document is not printed in colour (and | did not prepare it in colour :-)).

6.1. Simple system check

Let's say you quickly want to see if the system is doing alright. In the past this probably was a
vist at 1, as of now you would do:

dstat -taf

[dag@hun dag] $ dstat -taf

————— time----- -------cpuO-usage------ --dsk/sda-----dsk/sr0-- --net/ethl- ---paging-- ---system-

date/time |usr sys idl wai hiqg siq] read wit: read wit| recv send| in out | int csw
02-08 02:42:48) 10 2 8 2 0 O] 22k 23k: 1.8B 0 | 0 0 | 2588B 2952B] 558 580
02-08 02:42:49] 4 3 93 0 0 O 0 0 : 0 0 | 0 0 | 0 0 | 1116 962
02-08 02:42:500 5 2 90 0 2 1| 0 28k: 0 0 | 0 0 | 0 0 | 1380 1136
02-08 02:42:51] 11 6 82 0 1 O 0 0 : 0 0 | 0 0 | 0 0 | 1277 1340
02-08 02:42:52] 3 3 93 0 1 O 0 84k: 0 0 | 0 0 | 0 0 | 1311 1034

Dagit Linux Solutions, Dag Wieers Page 8 of 15

Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK

NOTE: The -t here is completely optional and generally wastes space. But often you are not
monitoring for 10 seconds but rather measure in minutes or hours. Having a general idea on what
timescale counters have been averaged is nevertheless interesting.

6.2. What is this system doing now ?

| often run both the dst at _t opcpu and dst at _t opnmemprograms on a system, just to see what a
system is doing. Having a quick look at what application is using the most CPU over a few minutes
and to see what the general usage of memory is of the top application gives away a lot about a
system.

[dag@norsea dag] $ dstat -c -Mtopcpu -dng - M topnem

----total -cpu-usage---- -nobst-expensive- -dsk/total- -net/total- ---paging-- -npst-expensive-

usr sys idl wai hiq sig| cpu process | read wit| recv send| in out | menory process
9 2 80 9 0 O0]kswapd 0| 123k 164k| 0 0 |9196B 18k]| rsync 74M
2 3 95 0 0 O0]sendmil 1] 0 168k| 2584B 39k| 0 0 | rsync 74M
18 3 79 0 O O]httpd 17| 0 88k| 5759B 118Kk| 0 0 | rsync 74M
3 2 94 1 0 O0]sendmil 1| 4096B 0 | 2291B 41908B| 0 0 | rsync 74M
2 3 95 0 0 O]httpd 1] 0 0 | 2871B 3201B| 0 0 | rsync 74M
10 7 83 0 O O]httpd 13| 0 0 | 2216B 10k]| 0 0 |rsync 74M
2 2 9% 0 0 0 | 0 52k| 724B 2674B| 0 0 | rsync 74M

6.3. What process is using all my CPU or memory at 4:20 AM ?

Imagine the monitoring team notices strange peaks, a system engineer got a worthless message,
the system was swaping extensively, a process got killed.

Something indicates the system is doing something unexpected but what is causing it and why ? As
of now you can do:

dstat -tcy -Mtopcpu 120
dstat -tngs -M topnmem 120
dstat -td -Mtopio 120

to see what process is using the most CPU, the most memory and the most I/O resources.

And hopefully one day we can do:

dstat -tn -Mtopnet 120
dstat -tn -Mtopx 120

Leave it running during the night and in the morning you can see the light.

6.4. What device is slowing down my system ?

A nice feature of Dstat is that it can show how many interrupts each of your devices is generating.
The cpu stats already show this in percentage as hard interrupt and soft interrupt, and the sys stats
shows the total number of interrupts, but the int stats go into detail. And you can specify exactly
what IRQs you want to watch.

Much like wat ch -n1 -d cat /proc/interrupts on speed.

dstat -t -y -i -f

Dagit Linux Solutions, Dag Wieers Page 9 of 15
Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK
which then results in:

[dag@hun ~]$ dstat -t -y -i -f 5
----- time----- ---system- -------------------jinterrupts------------------
date/time | int csw| 1 9 12 14 15 58 177 185
13-08 21:52:53| 740 923 | 1 0 18 5 1 17 4 131
13-08 21:52:58| 1491 2085 | 0 4 351 1 2 37 (0] 97
13- 08 21:53: 03| 1464 1981 | 0 0 332 1 3 31 0 96
13- 08 21:53:08| 1343 1977 | 0 0 215 1 2 32 0 93
13-08 21:53:13| 1145 1918 | 0 0 12 0 3 33 0 95
When having the following hardware:
[dag@hun ~]$ cat /proc/interrupts
CPWO
0: 143766685 1O API C-edge tinmer
1: 374043 1O API C-edge 18042
9: 102564 10O APIC-| evel acpi
12: 4481057 | O API C- edge i 8042
14: 1192508 10O API C-edge libata
15: 358891 10 API C-edge libata
58: 4391819 1O APIC-|level ipw2200
177: 993740 IO APIC-level Intel |CH6

185: 33542364 10O APIC-l evel vyenta, uhci_hcd: usbl, ethO, i915@ci:0000: 00: 02. 0
NM : 0
LOC. 143766578
ERR: 0
M S: 0

Or select specific interrupts:

dstat -t -y -i -1 12,58,185 -f 5

6.5. How does my WIFI signal evolve when | move my laptop or AP through
the house ?
Something | was looking into when trying to find the optimal location for the WIFI access point.

However | must say that another tool | wrote Dwscan is currently more sophisticated.

dstat -t -Mw fi

6.6. Is my SWRAID performing as it claims ?

This surprised me when Googling for Dstat. | was looking for other use-cases on the Internet and on
the linux kernel mailinglist one of the SWRAID developers was indicating a problem with an
implementation using Dstat output to prove it.

7. Writing your own Dstat plugin

Dstat is completely written in python and this makes it extremely convenient to write your own
plugins. The many plugins that come with Dstat are an excellent source of information if you want to
write your own.

Dagit Linux Solutions, Dag Wieers Page 10 of 15
Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK

7.1. Introducing the hello world plugin

The following plugin does nothing more than write "Hello world!" to its output.

cl ass dstat_hel |l oworl d(dstat):
def __init__(self):
self.name = "plugin title'
self.format = ('s', 12, 100)
self.nick = ('counter',)
self.vars = ("text',)
self.init(self.vars, 1)

def extract(self):
self.val['text'] = 'Hello world!'

In this example, there are several components:
1. sel f. name contains the plugin's visible title.

2. sel f.format is alist containing: the counter type, the counter length and how the colouring is
done.

3. sel f.nickis alist of the counter names.
4, sel f.vars is alist of the variable names for each counter.

5. sel f.init() isafunction that initialises the counter structures (sel f. cnl, sel f.cn2 and
sel f.val).

6. sel f.val contains the counter values that are being displayed.

7.2. Parsing counters

The following example shows how information is collected and counters are processed. It also
includes a check() method to properly bail out when the system fails to meet some plugin criteria.

gl obal gl ob
i mport gl ob

class dstat_postfix(dstat):
def __init__(self):

sel f.name = 'postfix'

self.format = ('d', 4, 100)

self.vars = ('incomng', 'active', 'deferred', 'bounce', 'defer"')
self.nick = ("inco', 'actv', 'dfrd', 'bnce', 'defr")

self.init(self.vars, 1)
def check(self):
if not os.access('/var/spool/postfix/active', o0s.R OK):
rai se Exception, 'Cannot access postfix queues'
return True
def extract(self):

for itemin self.vars:
self.val[iten] = len(glob.glob('/var/spool/postfix/'+itemt'/*/*")

This example shows the following items:

1. Since the plugin is imported at runtime, it is important that these are are included in the global
scope to reuse them.

2. sel f.format indicates values are in decimal, counters are 4 characters wide and colouring
differs every multiplication of 100.

Dagit Linux Solutions, Dag Wieers Page 11 of 15
Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK
3. The check() method tests conditions and bails out of they are not met.

4. To make processing easier we have opted to use as value names (sel f . var s) the name of the
postfix queues and store counts in sel f. val .

7.3. Opening files

Dstat provides its own dopen() function to plugins. Using dopen() instead of open() plugins do
not need to reopen files to update their counters. But this is only useful when plugins open a few
files. For eg. opening /proc/pid files the number of open files would only be increasing as the number
of processes increases.

7.4. Piping to an application

Dstat provides its own dpopen() function to plugins. This function allows the plugin to open a stdin,
stdout and stderr pipes for 2-way communication with processes. To see this in action, take a look at
the dst at _gpf s plugins or the dst at _nysql plugins.

Piping to an application is more expensive than getting kernel counters from /proc, but it beats
having to run a program and capturing the output.

8. Known issues

There are some known issues that are important to understand when using Dstat.

8.1. Counter rollovers

Unfortunately Dstat is susceptible for counters that “rollover”. This means that a counter gets bigger
than its maximum value the data-structure is capable of storing. As a result the counter is reset.

For some architectures and some counters, Linux implements 32bit values, this means that such
counter can go up to 2"32 (= 4294967296B = 4G) values.

For example the network counters are calculated in absolute bytes. Every 4GB that is being
transferred over the network will cause a counter reset. For example on a bonded 2x10Gbps
interfaces that is using its theoretical transfer limit, this would happen every 1.6 seconds.

Since /proc is updated every second, this would be impossible for Dstat to catch. Currently if Dstat
encounters a negative difference for an interval it displays a dash.

Obviously, if Dstat were to know what the counter's maximum value is, it could recalculate the
difference. However that is currently not implemented and does not guarantee a correct result either,
since a negative value could be the result of 2 or more rollovers.

If you suspect that the behaviour of your system is susceptible of counter rollovers, make sure you
take this into account when using Dstat (or any other tool that uses these counters for that matter)

TIP: Shipped with the Dstat documentation there is a document (counter-rollovers.txt) that goes
deeper into counter rollovers. If this affects you, read that document and contact me for possible
implementation changes to improve handling them.

Dagit Linux Solutions, Dag Wieers Page 12 of 15
Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK

8.2. Dstat performance

As mentioned several times now, Dstat is written in python. There are various reasons that Python
was chosen and the most important reason is that it simplifies writing plugins, processing counters
and lowers the bar for people to contribute changes.

The downside of choosing a scripting language is that it is slower than if it would be written in C,
obviously. Dstat is not optimised for performance.

NOTE: This may seem ironic: a performance monitoring tool that is not optimised for
performance, but rather for flexibility. However the ease of writing plugins and prototyping gets
precedence over performance at this time.

8.2.1. Plugin performance

If we look at the basic plugins, there are no real performance issues with Dstat. Loading Dstat takes
longer than eg. vmstat, but once running, Dstat's performance for the same functionality is up to par
with vmstat, ifstat and other similar tools.

However there are plugins that are much more resource intensive than others and the selection of
plugins determines Dstat's performance in a major way.

8.2.2. Debugging Dstat

Dstat comes with a —debug option that helps to find the cost of running plugins. The —debug option
show how long it takes Dstat to process the selected plugins.

You can see the cost of Dstat itself by simply using the dst at _t i me plugin together with the —
debug option.

[dag@ hun dag] $ dstat -t --debug
Modul e dstat _tinme

date/tinme
19-08 20:34:21 5.90ns
19-08 20:34:22 0.17ns
19-08 20:34:23 0.18ns
19-08 20:34:24 0.18ns

Compare this with other plugins to see what the cost is of an individual plugin.

[dag@hun dstat]$ dstat -c --debug

Modul e dstat_cpu requires ['/proc/stat']
----total -cpu-usage----

usr sys idl wai hig si

q
15 3 77 4 0 1 11.07ns
5 3 92 0 0 O O0.66m
5 4 91 0 0 O O0.65m
5 3 92 0 0 0 0.66mnms
Dagit Linux Solutions, Dag Wieers Page 13 of 15

Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK

As you can see, getting the CPU counters and calculating the CPU usage takes up 0.5 milliseconds
on this particular system. But if we look at the usage of the dst at _t opcpu plugin:

[dag@hun dstat]$ dstat -Mtopcpu --debug
Modul e dstat _topcpu
- nost - expensi ve-

cpu process

Xor g 2 43.82ms
Xorg 1 33.23ms
firefox-bin 2 33. 54ms
Xorg 1 33. 24ms

we see that processing the /proc/pid files causes the topcpu plugin to use an additional 33ms.

WARNING: These values show the time it takes to process the plugins and does not indicate the
amount of CPU usage Dstat consumes. This obviously means that the process time of plugins
depends on how hard the system is being stressed as well as on what the plugin exactly is doing.

Plugins that communicate with other processes or those that process lots of information (for
example communicating with the mysq| client, or processing the mail queue) may not actually use
any local resources, but the latency causes Dstat to slow down processing other counters.

8.2.3. Writing Dstat and plugins in C

It makes sense to reimplement Dstat or some of its plugins in C and still allow the writing of Python
(or even Perl) plugins. Tests have shown that for example processing /proc/pid in C makes the
plugin 3 times faster. And this did not take into account the processing of the results and displaying
the output.

So rewriting in C makes a lot of sense, but it is also much more complicated.

8.3. Python 1.5

Dstat works with python 2.0, however there is also a Dstat15 version that still works on python 1.5.
The downside of having Dstat work on python 1.5 is that the external plugins cannot use the newer
and more flexible python 2.0 syntax and the differences between python 1.5 and 2.0 are
considerable.

NOTE: Not all plugins work properly on Python 1.5.

9. Future development

The Dstat release contains a TODO file highlighting all the items and ideas that have been played
with. Here is a list of the most important ones:

e OQutput
e Changes in how Dstat colours digits within a value (the 6 in 6134B) *
e Exporting information

e Connecting Dstat with rrdtool

Dagit Linux Solutions, Dag Wieers Page 14 of 15
Linux and Open Source consultancy Version: 5773

Dstat: plugin-based real-time monitoring LinuxConf Europe 2007, Cambridge, UK
e Exporting to syslog or remote syslog (a way to transport counters ?)

* Plugins
¢ Be smart when plugins are loaded more than once (some plugins could benefit)
e Add more plugins

¢ Redesign Dstat
* Work on the plugin infrastructure, make the API more simple and straightforward

¢ Create an object-model and namespace for plugins and counters so that other tools can be
based on Dstat

10. Links

e Dstat homepage

e Dstat subversion

e Dstat mailinglist

Dagit Linux Solutions, Dag Wieers Page 15 of 15
Linux and Open Source consultancy Version: 5773

http://dag.wieers.com/home-made/dstat/
http://lists.rpmforge.net/mailman/listinfo/tools
http://svn.rpmforge.net/svn/trunk/tools/dstat/

	1.Introduction
	2.A case for Dstat
	3.Dstat characteristics
	3.1.History of counters
	3.2.Adding unit indication
	3.3.Colour highlighting units
	3.4.Intermediate updates
	3.5.Adding custom counters
	3.6.Selecting plugins and counters
	3.7.Exporting to CSV
	3.8.Time-plugin included
	3.9.Terminal capabilities

	4.Plugins and counters
	4.1.Internal plugins
	4.2.External plugins
	4.3.Most-wanted plugins

	5.Using Dstat
	5.1.Enabling plugins
	5.2.Total or individual counters
	5.3.Influencing output
	5.4.Plugin search path

	6.Use-cases
	6.1.Simple system check
	6.2.What is this system doing now ?
	6.3.What process is using all my CPU or memory at 4:20 AM ?
	6.4.What device is slowing down my system ?
	6.5.How does my WIFI signal evolve when I move my laptop or AP through the house ?
	6.6.Is my SWRAID performing as it claims ?

	7.Writing your own Dstat plugin
	7.1.Introducing the hello world plugin
	7.2.Parsing counters
	7.3.Opening files
	7.4.Piping to an application

	8.Known issues
	8.1.Counter rollovers
	8.2.Dstat performance
	8.2.1.Plugin performance
	8.2.2.Debugging Dstat
	8.2.3.Writing Dstat and plugins in C

	8.3.Python 1.5

	9.Future development
	10.Links

